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The frequency domain technique uses a Fast Fourier Transform (FFT)
spectrum analyzer to calculate the system's transfer function, which requires

the measurements of both the output response and the input. During the
experiment a structure is randomly or impulsively excited and the transfer
functions are averaged over the number of samples to eliminate as much noise as
possible. An appropriate curve fitting algorithm is then used to extract the
eigenvalues and eigenvectors from the transfer functions. Once these values
have been extracted, the mathematical model, dynamic equations, of the system
and the associated mass, stiffness, and damping matrices can be obtained by
system identification technique.

Two new methods of identifying the existence and locations of cracks and
other damages in continuous structural systems have been developed by
investigating the changes in the ﬁass and flexibility matrices respectively.
The flow chart of the entire algorithm to identify a crack and its location is
shown im Fig. 1

Both numerical and experimental tests were performed on cantilever beams
and on an offshore platform scale model supported on soil foundation. The mass
and flexibility matrices for each damaged and undamaged model are analyzed and
the results used to illustrate the success of the procedure in detecting and

locating damages in these structures.



CANTILEVER BEAM TEST - NUMERICAL RESULTS

Transfer functions of the steel cantilever beam model
obtained from finite element method (using NASTRAN) were analyzed
to obtain M by using the frequency domain curve fitting
technique and the System Identification Algorithm.

A steel cantilever beam, whose geometry and its finite
element model as shown in Fig. 2, has been analyzed. The beam is
i" wide, 12" long and 1/8" thick. Six measurement points are
selected along the longitudinal direction. Cracks were simulated
singulary at various positions. In each case, the crack lies
between two sequential points and its length is 3/8" exgepding
from the longitudinal edges to the crack tips. The elements in
the mass matrix for the cut cases are divided by the corresponding
values of the no cut case to give the mass ratio. A number of
simulated cut cases were tested. In addition , three other test
cases with varying length.ef cut were also investigated to
demonstrate the correlation between damage size and system
parameter. The cuts were made 3" from the lumped edge (in between
points 5 and 6). The cuts were symmetrical, and were made as
follows: 1st cut is 1/8", 2nd cut is 1/4" and the 3rd cut is
3/8". Fig. 3 describes the geometry, location of measurement
points and the three different cut-length cases. The dynamic

force was always applied at point 5.



MASS RATIO METHOD

Table 1 gives the results for Cut 3-4 Case (i.e., cut in
B the middle between points 3 and 4). It can be observed that the
values in the (i = k = 4) block are greater than 1.8 while the
values in the rest of the matrix is less than 1.0 except the
diagonal terms. This provides a locater for the cut. For a
better visual presentation, each row in the mass ratio matrix is
plotted for each cut case. An example for cut 3-4 case is shown
in Figure 4. It can be seen that the cut location has the
narrowest upper-lower bound band and is therefore easily
- identified. Additional cases where the cut is not in the middle
of two points but is closer to one point, have been analyzed. The
effect of different boundary conditions, simply supported and
fixed end conditions has also been investigated. The same
regularity can be deduced from all above results. Fig. 5 is the
mass ratio for Cut 4-5 case. |
g%%garing the mass ratio matrices of the thrge different
depth cut cases, it is observed that the more serious the démage
is the greater changes occur in maés matrix. These can be shown

in Fig. 6 and 7 for the first cut and third cut situations.
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FLEXIBILITY METHOD

In our theoretical study, see reference (5), it was shown
that the diagonal elements of the flexibility matrix [F] , which
is the inverse of [K] , deviate in an orderly fashion with
respect to the location of the damage. To demonstrate its use in
locat;ng the crack, the flexibility matrix [F] is extracted by

the System Identification Technique, for various cut cases shown

as in Fig. 3. Fig. 8 shows the diagonal term changes in [F].
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Figure 8 Diagonal Terms Change in
Flexibility Matrix

As the cracks were introduced, all the diagonal terms in [F]
beginning from F22 to F66 increased in value. According to the
Flexibility Matrix Theory the cut is predicted and lies in segment

2 (between points 5 and 6).



CANTILEVER BEAM TEST - EXPERIMENTAL RESULTS

An experiment has been conducted using an aluminum beam.
Its geometry, and location of the measurement stations are shown
in Fig. 9. The beam is 1" wide, 19.5" long and 1/4" thick. Saw
cuts were introduced between points 4 and 5. The cut is
symmetrical, and 1/4" long starting from the edges. Two
additional saw cuts were made 1/16" deep from the bottom and the
top planes. An impulse hammer with force sensor and
accelerometers were used to provide and pick up the forcing
function signals at point 5 and the response signals from six
selected points. The transfer functions from the impact point to
any accelerometer point were obtained by the Nicolet FFT analyzer.
Fig. 16 is the mass ratio matrix changes obtained from the
experimental results. Cracks between points 4 and 5 are still

identifiable, even though the mass ratio values showed more

« .

scatter than in the numerical case. Fig. 11 is the flexibility
matrix changes obtained from the experimental results. The on-set
of the monotonic divergence between drastic cut and no cut cases
indicates that the cut location is at segment 3, between points 4

and 5.



OFFSHORE PLATFORM TEST - NUMERICAL RESULTS

A 1/14 scale steel model simulating an offshore platform in
the Gulf of Mexico was used to demonstrate the application of the
mass ratio and flexibility methods to detect and locate damages in
complex structures. The geometry and aimensions are shown in Fig.
12. The platform model was supported on four steel piles with
2.5" outside diameter and 7 ft. length which were embedded in soil
foundation. Two types of selected point distribution were
considered (see Figs. 13 and 14). The first one was the line
condensation, the type which has 7 selected points, 6 of them
lined along one leg. The second type was the plane condensation
which has 9 selected points, 8 of them were arranged in'one plane.
A through cut damage was created at the third level horizontal
bracing in both models.

A finite element model was developed using the NASTRAN
structure analysis computer code. The top plate was modelled with
quadrilateral plate elements which account for bending as well as
membrane stresses. All cross members were modelled as beam
elements to account for bending in the members. The soil
foundation was assumed to be a Winkler foundation which was
modelled with suitable elastic spring and dashpot elements. FEight
pairs of springs, one for each of two horizontal directions of
motion, were attached to beam elements that represent each of the

foﬁr piles embedded in soil.
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The damping values, C, of all the dashpots attached to the
pile elements were determined to be 2 lb/in/sec.

Each model consists of 158 grid points,'153 CBAR, 48
CQUAD2, 4 CONM2 elements, 64 linear elastic spring and 64

dashpots.

MASS RATIO METHOD - LINE CONDENSATION CASE

Fig. 15 is the plot of the diagonal terms in the mass ratio
matrix. The most influenced elements in the matrix are (3,3) and
(4,4), with (4,4) the maximum. This is reasonable since only
points 3 and 4 have a bar member directly connected to the damage.
Similar to the cantilever beam case when the damage is.between
%(W : points 3 and 4, the element (4,4) has the maximum value in the
diagonal of the mass ratio matrix. Therefore, the procedures to
identify the crack damage location in line condensation case are

i

- Determine the two most influenced elements and the positions of
* the related points from the diagonal terms in the mass ratio
matrix.

- The crack should be located on members which are connected to

both identified points.

13



mgs RATIO

D!AGONAL TERMS IN MASS RATIO MATRIX
LA OW VI 7 P13 LIM COO. >

. ] 2 t ] * £ 3 [ ]
CoLre

-

Figure 15 Diagonal Terms of Mass

PLECIILITY Natld

Ratio Matrix (Plat form
with Line Condensation)

DMGONAI. TERMS IN FLEX. RATIO MATRIX
PLAIFOM WITh 7 PTS LTWE COND 3

Oﬁ—‘fv'v‘v"rrrr'rrrvvv-rrrrvrvvrrrrrrvrrrrq

Figure 17 Diagonal Terms of Flex.

Ratio Matrix (Platform
with Line Condepsation)

MATY RATIO

15

DlAGONAI. 'I'ER’IS IN MASS m'no HM’RIX
Ot Wite & £TS

T | A
H 4 - L[] [ ) "
e

Figure 16 Diagonal Terms of Mass

MEXTINITY Aart)
2
i

]
L

Ratio. Matrix (Platform
with Plane Condensation)

DlAGONAI. TERMS IN FLEX. RATIO HATRI!
SLATFOR VITH @ PTS FLAML CONO

[ ]

] | M T ¥
e [ .
" cotAe

1
“w

Figure 18 Diagonal Terms of Flex.

Ratio Matrix (Platform
with Plane Condensation)



-------

17

OFFSHORE PLATFORM TEST - EXPERIMENTAL RESULTS |

An 1:14 scale model of an offshore platform structure
supported on steel frame was set up on concrete foundation outside
the robotics laboratory in the University of Maryland for damage
tests. Its geometry is descfibed in Fig. 12. Fig. 19 is the
picture of 1/14 scale offshore platform model with 31.5 inch long
steel frame. Fig. 20 is the detail picture of the connection
between main legs and the embedded steel frame. Figs. 21 and 22‘
are the front and side views of model sitting inside the dug hole
which is 7 feet by 7 feet. The frame bracket tighten to the brick
wall is the support for pendulum equipped with hammei and forcd
transducer at the end. Figs. 23 and 24 are the pictures of model
after concrete is poured into the dug hole. Eleven accelerometer
positions were selected in the experimental model. They are
labeled point 1 through 11, and the accelerometers along the same
leg are arranged in the same direction. The positibns of the
accelerometers are shown in Fig. 25.

The pendulum was set up to provide impact excitation at
the point No. 1ll. The responses at all accelerometer positions
were monitored before and after system was changed. Two kinds of
experiments have been performed, ie. system with added weight and

system with damages.

SYSTEM WITH ADDED WEIGHT - As shown in Fig. 25, 33 1lb. weight was
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added at point No. 10 on the top plate. The purpose of this
experiment is to investigate how the mathematical model changes,
especially mass matrix, after added weight was aplied to the
system. For calculation efficiency, the system was simplified as
a 5 DOF, includiqg points 2, 4, 6, 8 and 11. Fig. 26 is the plot
for diagonal terms in mass ratio matrix between baseline and added
weight cases. It shows that the closer the points to the added
weight position, the greater their masses have changed, e.q.

points 8 and 11. This is a reasonable trend as expected.

SYSTEM WITH DAMAGES - Three stages of damage were introduced to
the structuré, refer to fig. 27. The first stage damage was a saw
cut at the middle point of the horizontal connecting beam between
positions 3 and 4, and the cut was one third deep thrdugh the
diameter of the beam. The second stage damage was a two third
deep through the diameter of the beam. The third stage damage was

a complete through cut at the same location. Therefore, there are
R ot

,fdﬁr' senarios analyzed: baseline, first stage, second stage, and

third stage damages. Fig. 28-32 are the pictures of the vibration
test instruments and the horizontal beam with damage in four
senarios. Fig. 33-47 are the transfer functions at positions 2,
4, 6, 8 and 11 for the baseline, second and third senarios. The
spectra inéicate that there are distinct frequency shifts and
changes in peak amplitudes before and after damage.

System parameters corresponding to different damage stage

have been analyzed and the results are described as followings.
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CONCLUSIONS

o The System Identification Technique fsr characterizing the
system through [M] , [C] and [K] matrices by use of the
frequency response under single loading has been developed.
Reasonable results obtainedbfrom tests in continuous systems
successfully verified the algorithm.

The crack location in the structural system can be
identified by analyzing the changes in the mass ratio matrix or
~the diagonal terms in the flexibiiity matrix.

Based on the present study, the mass ratio matrix is more

sensitive than the flexibility matrix to damage in the structure.

The relative severity of the damage can also be verified by
observing the behavior of the mass ratio plots. A more severe
cut shows a more scattered upper-lower bound and a more distinct

cut location. Similarly, in the flexibility matrix plots, the

more severe cut shows more deviation from the baseline.
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FIG. 25 1/14 SCALE OFFSHORE PLATFORM EXPERIMENTAL MODEL
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FIRST DAMAGE

SECOND DAMAGE

THIRD DAMAGE
( THRU CUT )
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FIG. 27 THE MEASUREMENT POINT NUMBERING AND THE CRACK LOCATION
FOR 1/14 SCALE OFFSHORE PLATFORM EXPERIMENTAL MODEL



FIG.

29

THE CROSS BEAM FOR BASELINE CASE

FIG.

30

THE FIRST DAMAGE CASE
( 1/3 DEPTH CUT ON THE CROSS BEAM )
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ECOND DAMAGE CASE
DEPTH CUT ON THE CROSS BEAM )

FIG.

32

THE THIRD DAMAGE CASE
( THROUGH CUT ON THE CROSS BEAM )
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Let us begin by considering a structural system which can
generally be represented by an N degree-of-freedom linear system.

The dynamics of the system are governed by its equation of motion:

M1 [x] + [C] [X] + (K] [X] = [f]

where‘[x],[i],[i]are the displacement, velocity, and acceleration

' column vectors of the degree of N, respectively. Force column [f]

is at the N degree. The [M] , [K], and [C] are N x N mass,

stiffness, and dauping matrices, respectively.

| The system identification technique involves the

identification of [M], [K], and [C] matrices of the system, from

the known responses [X],[i],[i] and the known forcing function [f].
Adding to the equation (A.1) a trivial differenﬁial

equation:

M O1-MIk=0 ... (A2

a set of ‘equations which describe the motion of the same structural™

system were obtained:
e [ el - (4]
[m [cl (o] | k] - - - == = = (A.3)

or in the condensed form:

(0] [q] + [E] [q] = [q]
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uhére the matrices are defined as:

[o1(M]

-[MYlo]
(Ed —[o%er
* ’i = ___:x__ = _9__
i -[ 4] (5] w-[4]

After performing the Laplace transformation, the following is

obtained:

(8 (s)] [q (s)] = [Q (s)] - = = == ===« =-(A5)
where
[8(s)] = [:[D]8 + [E]] is the system matrix.

It can be proved that [D] and [E] can be represented by the
eigenvalues K , and eigenvectors [Yk] » produced from the system

matrix and determined by the homogeneous equation:

B (P)] [yl =0 m e e e e e e - - = (8.6)

when [M], [K] , and [C] are symmetric, the following expressions



can be proved:

o1 = 70
(e = [¥3717-p1 V17!

where

Yy = [.YI: -V2' .Y39 T .VN]

while the eigenvalues matrix is:

It can be shown that the system's transfer function could be

is an eigenvector matrix

represented as a function of eigenvalues and eigenvectors, that is:

: T
(s)] = [vlIs-p17'YD = E_l {___

or

n [ak]
) < ¥ 2

where Pk

gl

kth root of {det (B(s)) = 0}

residue matrix for the kth root



APPENDIX II

FREQUENCY DOMAIN CURVE FITTING METHOD

The relation between the ideal and the measured
frequency response of a system can be expressed in the
following equation

giw) = z(Ju) = e (Guw) (1)
where z(ju) is the measured data, e(ju) is the measurement
noise and g(Jju) ;s the ideal fregquency response.

Assume the system is linear and the transfer function is

a,+a,(ju )+ ... +a (Guw ) n(juw )
g(ju) = 172 n+l - (2)

bl+b2(j<u + ... +bm(j m)m-l‘*'(jm e d (Guw )

where n and m are assumed to be known (n £ m)
Given a set of measurements, z(Jjw) = ap + iByg, (k = 1, 2,
... s), s is the measured frequency points. The purpose is
------ to estimate’ coefficients a, and b, in (2) by minimizing
some cost function of e(Jjuwk). Combining Egs. (1) and (2),
one can obtain
aGu) -l 8] - 40 w= €G ) - 4G o) (=128 )

With the definition of the following

. T
x = [a1 a2 --. @+l b1 b2 ... bn ]
0 .1 2 _ n_ T o
P = [(J@k) (Jek) (o ... (Juk) ] =Ppr + 3ipI
0 1 2 a1 _ T % k
qe = [(Gu)  (Gor) (k) - Guo) ] = ar* Il

Eq. (3) can be rewritten in a matrix form as

..AkX‘Yk=ek(k=lrzl---rs) (4)



where

B T T T

_ PkR -a quR + 8 qul’

Ay 2x (m+at+l)
' T T T

| Pyl —a gl 7B Eht

[ Re [(a + 18 k).(j)“‘]"\ L

Tt | m ey 380 @]
2x1
Re[ €( wy) -4 w) ]
ek B .
Im[ (3 mk)-d(j mk)] 2%l

Eq. (4) can be further condensed and written as
AXx -y = e (35)
where

T
- T T T T
A—[A}_ A ee. A ‘... As]

i

(vifyal ooe v oon w3 ]°

[elT ezT ee. ekt ... eE]T

With least-squares approach one can find the best estimate

4

e

of x for Eg. (5) that minimizes the following cost function

2 s 2
Eo= |le]] =X | (r)dle )| (6)
k=1
is
T -1 T
x = (AA) Ay (7)

Tﬁis is, in fact, the same result as what Levy got in (17).

Instead of eliminating the weighting factors, d(jwk)
in Eq. (6) as what others did (18-20), a new set of
weighting facators is introducted here into Eg. (6) through

iterations. The procedure is as follows.

£



o 1. Let n(ju, ) and d(j¢nQL be the values of n(jw) and
d(j¥k) , respectively, based on the estimate of x in the

L-th iteration.
2. Replace n(Jmk ) and d(jmk) with njjnk)L and d(J“kk ’

respectively, 1in Eq. (3) and divide both sides by n(jwk

Li;l to yield
aGe Oy - zGe Pdle )y e@u dd@e Iy )
[nG eyl [aGaw Dyl

3. Rewrite eqn. (8) in matrix form as

DkAka - Dkﬁg = Dkek (k =1, 2, ... s) (9)

where

D, = ’ (k=1, 2, ...s)

|G © 00l 0o 1

4. Combine all equations in Eg. (9) together in the
following matrix equation,
DAx, - Dy = De (10)

where



1,

Formulate the new cost function as

2 s . 2
£, = lfoell = §I.€Gmkm(jmk)L/ncjmk)L_l\ (11)

Obtain the best estimate of foor the L-th iteration

x, = (A QA) A Qy (12)

where Q = D D =D
To initiate the procedure, or equivalently for L =

one can assume ]n(jmk)ol = 1, which will give Levy's

result of ai's as the result of the first iteration.



APPENDIX III

SOIL MODELLING

The spring constant to simulate the Winkler
foundation was given by Haldar (1977), reference (43).
Ki(z) = Kc(z) Si

-1 h- - 2 2 2, 3
K (2)= & E(z) { sinh 1hz  -lbte 2 jrh-2r z+hz "+ z
¢ 5 .
3r 271/2

3 r r 2
[+ (h+2)

_ —Zx'zz-f-‘z3 - 2 [ z-h _ z ]
r2+ z2 1/2 3 [r2+(h-z)2 ]1/2 [ r2+ z2] 1/2

+ 4 rzz+hzz+ z3 _ rzz + z3
[r2+(h+z)2 ] 3/2 [ r2 + 22 ]5/2

where Ki (z) 1is the i-tg spring constant, S, the i-th
spacing, h the height of the pile, r the radius of the
pile, and =z the soil depth. E(z) is the Young's Modulus
at depth z , and is derived from the shear modulus, G,
which is expressed as the following formula
G = 1000 K (‘z;l)l/z(psf)

du; = average of three principal stresses =




o1 = YZ

vy = soil weight density 100 lb/ft3 (assumed)

6 = 03 = kgop = (lL-sin¢)/(l+sin¢) . o (for cohesionless
© soil) (44) |

0
= soil friction angle from triaxial test = 39 {assumed)

k, = 50 (assume soil is in low strain level (10—%)

Kéz) is derived from the Mindlin equation which gives the
horizontal displacement as induced by a single concentrated
force located at any point within an isotropic half-space
and exerting in horizontal direction.(45)

The more detailed explanation for the above

equations can be found in reference (46).
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